
NERSC Workload Analysis on Hopper
K. Antypas, B.A. Austin, T.L. Butler, R.A. Gerber, C.L. Whitney, N.J. Wright, W. Yang, Z. Zhao

Lawrence Berkeley National Laboratory, Berkeley, CA
Author contact: kantypas@lbl.gov

The National Energy Research Scientific Computing (NERSC)
Center is the primary computing facility for the United States
Department of Energy, Office of Science. With over 5,000 users
and over 600 different applications utilizing NERSC systems, it is
critically important to examine the workload running on NERSC’s
large supercomputers in order to procure systems that perform well
for a broad workload. In this paper we show the breakdown of the
NERSC workload by science area, algorithm, memory, thread
usage and more. We also describe the methods used to collect data
from NERSC’s Hopper (Cray XE6) system.

Keywords—workload analysis; workload characterization;
supercomputing; HPC;

I. INTRODUCTION
The National Energy Research Scientific Computing

(NERSC) Center [1] serves as the primary High Performance
Computing (HPC) facility for the Department of Energy,
Office of Science (SC). NERSC supports the entire spectrum
of SC research, and its mission is to accelerate the pace of
scientific discovery through high performance computing and
data analysis. An Office of Science user facility, NERSC
serves over 5,000 scientists annually throughout the United
States and the world, supporting over 700 distinct projects
utilizing more than 600 discrete applications. These
researchers, working remotely from Department of Energy
laboratories, other Federal agencies, industry, and universities,
use NERSC resources and services to further the mission of
SC. Computational science conducted at NERSC covers the
entire range of scientific disciplines, but is focused on research
that supports DOE’s missions and scientific goals. The results
of the scientific use of NERSC are documented in over 1,500
peer reviewed scientific papers per year as well as in NERSC
annual reports and other materials.

Because of NERSC’s large number of users and the
diversity of applications running on the NERSC systems, it is
extremely important to understand the workload and how it is
changing so that NERSC can procure systems that best meet
the needs of its users. NERSC procures a new supercomputer
ever three to four years and at the beginning of every new
project, NERSC conducts a thorough workload analysis to
understand the characteristics of applications running on the
NERSC systems. [2] In this paper we describe the methods
used for collecting workload data, and the results of our
workload analysis. The NERSC workload analysis was
conducted on the Hopper [3], Cray XE6 system. The Hopper
system has over 6300 compute nodes, each with two AMD
Opteron 12 core (Magny Cours) processors. The nodes on
Hopper are connected via the Cray Gemini interconnect. The
Hopper Lustre [4] parallel file system has over two petabytes
of disk and provides 70 GB/sec of I/O bandwidth. The

workload analysis was conducted during 2012 and the first half
of 2013. During this period, Hopper supplied approximately
95% of the computational cycles to NERSC users and thus
provided a representative sample of the NERSC workload. As
part of the analysis NERSC examined the breakdown of
science areas, applications and algorithms on Hopper, job
sizes, memory and threading usage as well as the top libraries
used on the Hopper system.

II. METHODS

A. Collecting Job Data from Hopper
All jobs that run on Hopper, whether they use one or more

nodes, are submitted by users through a Torque/Moab batch
system that integrates with Cray’s Application Level
Placement Scheduler (ALPS). Users write and submit batch
scripts to Torque, requesting some number of nodes for some
length of time. From within that script, users can run one or
more programs by passing an executable name to the ALPS
aprun utility, which launches and manages the program
executables on the Hopper compute nodes. Programs launched
via aprun can use some or all of the nodes allocated to the job
by Torque/Moab. Each job and each aprun gets exclusive use
of each node it is allocated; there is no node sharing on
Hopper.

Information about completed jobs is available from Torque
accounting logs and from informational messages emitted by
ALPS. The Torque logs contain job characteristics like time
submitted, start time, end time, number of nodes requested,
wallclock time requested, a list of allocated node IDs, user
name and account. ALPS logs the start time, end time, node
IDs, and full command line for each aprun command. From the
aprun command line, we can infer the number of threads used
and a number of thread and memory affinity settings.

NERSC collects data from the various job log files, parses
the data and stores them in a MySQL job database. This
allows NERSC to easily query the data and to create reports for
select users, science areas, or time frames.

Cray supports a resource collection method called Cray
Application Resource Usage (ARU) tool. This tool was
created because ALPS does not pass resources, (such as
application memory data), up to batch systems such as
Torque/Moab used on Hopper. Instead these resources are
collected by ARU from a separate ALPS logfile. It was a
simple extension to NERSC’s MySQL job database to include
the new ARU data.

B. NERSC Information Management (NIM) System
NERSC maintains a database, called the NERSC

Information Management system (NIM), of user and project
information. All jobs at NERSC are associated with both a
project (known as a repository or repo) and a user. Each
project is allocated computing resources by a DOE program
manager from one of six DOE Office of Science program
offices. 1 Each project is also assigned a NERSC science
category.

Every job run at NERSC is associated with a project (repo),
and resource usage is attributed to DOE offices and science
categories by joining the account field from the Torque
accounting logs (described above) and repository information
from the NIM database.

C. Automatic Library Tracking Database
The Automatic Library Tracking Database (ALTD)

infrastructure developed at the National Institute for
Computational Sciences (NICS) [4], is a tool that can track all
libraries that are linked into applications at compilation time.
ALTD was installed and put into production on the Hopper
system in June 2012 and since then NERSC has been
collecting information about the libraries run on Hopper.
ALTD can also track the applications that are executed through
a batch system by wrapping the job launcher, aprun, on Cray
systems. ALTD is implemented in Python, and uses a MySQL
database to store the library usage information that was
captured by intercepting the GNU linker, ld. These data can
then be mined to generate library usage reports. ALTD is
light-weight in that it does minimal logging to wrap the linker
and the job launcher keeping overhead at link time and job
startup time negligible. The ALTD ld wrapper captures the
following information for each successful linking:

• username (who linked the code)

• link date (when an executable is linked)

• executable name

• all libraries that are linked into the executable.

It should be noted that the ALTD ld wrapper only records
the libraries actually used by the executable. This is
implemented by calling the linker with the tracemap (-t)
option, such that libraries included on the link line, but not
called in the executable will not be logged. These are stored in
a MySQL database and by querying for a pattern that is
specific to a library, it is possible to determine the number of
times a particularly library was linked and the number of
unique users of that library. In addition, the ALTD ld wrapper
adds a unique tag into the executable which can be captured
and recorded in the database when the executable is launched
by the aprun wrapper. This tag is the pointer to the libraries

1 The DOE Office of Science Offices: Advanced Scientific
Computing Research (ASCR), Basic Energy Sciences (BES),
Biological and Environmental Research (BER), Fusion Energy
Sciences (FES), High Energy Physics (HEP), and Nuclear Physics
(NP).

linked into the executable that actually runs on the system.
Together with other tools that can report the machine hours
used by the executables that run on the system, it is possible to
track the actual usage of libraries on the system (not only the
compilation/linking time).

III. WORKLOAD ANALYSIS CHARACTERIZATION
The following section describes the results of the NERSC

workload analysis.

A. Science Area Breakdown
Figure 1 shows a breakdown of Hopper CPU hours by

science area. NERSC supports all six Office of Science
Offices: Advanced Scientific Computing Research (ASCR),
Basic Energy Sciences (BES), Biological and Environmental
Research (BER), Fusion Energy Sciences (FES), High Energy
Physics (HEP), and Nuclear Physics (NP). At NERSC, users
are given an allocation of time on the systems from the DOE
Program Managers and so the breakdown of time on Hopper is
representative of the allocation of time by each of the Science
Offices to various projects. As priorities within the Office of
Science change from year to year the allocation given to a
particular science area will change.

Fig. 1. Hopper CPU hours broken down by science area.

B. Application Code Breakdown
Figure 2 shows a breakdown of the top codes at NERSC by

the number of hours used on Hopper in 2012. The colors are
not meaningful and only intend to break up the pie chart to be
more readable. The chart shows a highly concentrated and
unevenly distributed workload with three applications making
up 25% of the workload and 10 applications making up 50% of
the workload. 35 applications make up 75% of the workload
with the remaining more than 600 codes comprising the
remaining 25% of the workload. The top three applications run
at NERSC in 2012 were the Community Earth System Model
(CESM), VASP, a Materials Science, plane wave density
functional theory electronic structure calculation application,

and MILC a Lattice Quantum Chromodynamics (QCD)
application. The top 25 applications are listed in Table 1.

Fig. 2. Hopper CPU hours broken down by code usage.

TABLE I. TOP 25 APPLICATIONS ON HOPPER IN 2012

Application Name Science Area
CESM Climate
VASP Materials Science; Plane Wave DFT;
MILC Quantum Chromodynamics
XGC Fusion, Particle-in-cell
CHROMA Quantum Chromodynamics
LAMMPS Molecular Dynamics
NAMD Molecular Dynamics
OSIRIS Fusion, Particle-in-cell
BLAST Bioinformatics
ESPRESSO Materials Science, Plane Wave DFT
GTS Fusion, Particle-in-cell
CASTRO Adaptive Mesh Refinement, astrophysics
NWCHEM Chemistry
EMGEO Geophysics
GTC Particle in cell Fusion application
BERKLELYGW Materials Science, Plane Wave DFT
GYRO Eulerian gyrokinetics; Fusion
S3D Combustion
M3D Fusion, continuum
VORPAL Accelerator, Particle-in-cell
RHMC Quantum Chromodynamics
PSTG Fusion
CP2K Materials Science; Plane Wave DFT
GS2 Fusion, continuum
GROMACS Molecular Dynamics

C. Algorithm Breakdown
The apparent complexity of the NERSC workload as

shown in Figure 2 can be simplified by recognizing that groups
of applications often share similar underlying algorithms. This
observation is analogous to earlier insights that a small number
of computational kernels account for most HPC use [6].

However, a categorization of algorithms acknowledges that a
complete application will often be composed of multiple
kernels, and optimal performance of the full application may
require different implementations of each kernel. While no
codes account for more than about 10% of the available
compute resources, Figure 3 shows that the top five algorithm
classes (Fusion particle-in-cell, Lattice QCD, plane-wave
density functional theory, climate and molecular dynamics)
each represent 8-12% of the workload. With only thirteen
categories, we can describe nearly three quarters of the
applications.

Fig. 3. Hopper CPU hours broken down by algorithm area.

D. Third Party Application Support
The NERSC User Services Group installs and supports an

array of applications on the NERSC systems, primarily
Materials Science and Chemistry applications. Figure 4
shows that 23% of the hours used on the Hopper systems were
applications supported and installed by NERSC staff. VASP,
NAMD and LAMMPS are the top three applications that
NERSC staff support.

Fig. 4. Third Party Application Support

E. Job Size Breakdown
NERSC users run applications at a wide range of job sizes.

Some user applications run across all the nodes in the system
while other users run applications on smaller number of nodes
and submit many jobs to do parameter studies or high
throughput screening. Figure 4 shows the percentage of hours

run on Hopper at various sizes. Approximately 15% of
computational cycles use more than 40% of the compute
nodes and 40% of cycles use more than 10% of the
system. Because of the large range of job sizes it is important
for NERSC systems to have a fast and scalable interconnect to
support large jobs in addition to having a robust batch system
which can support many smaller concurrent jobs.

Fig. 5. Hopper Job Size Breakdown

F. Memory Usage
Understanding task memory usage of a given workload is
important as the computer industry moves towards
architectures with more cores per node with less memory
available per MPI task. Hopper has approximately 6300
compute nodes, each of which has two, twelve-core AMD
Magny-Cours processors, for a total of 24 cores per node.
6,000 nodes have 32 GB of memory, and the rest have 64 GB.
To illustrate, for a 32 GB node, if all 24 cores were running an
MPI task, each MPI task would have 1.3GB of memory
available to it. (In practice this number is slightly lower due a
small amount of memory overhead from the OS and file
system services on each node.) Figure 6 provides information
on application memory usage on the Hopper system. The plot
is a histogram of memory usage per MPI task and shows both
the percentage of node hours in each memory range bucket as
well as the integrated percentage of node hours. The
horizontal axis is memory high watermark in GB per MPI
task. The vertical axis shows the percentage of total node
hours run within each histogram bucket range.

Figure 6 shows that close to 50% of user node hours used less
than 0.3 GB per MPI task. With 24 cores on a node, this
means an application using 0.3GB of memory per MPI task,
could easily utilize all 24 cores on the 32 GB node. More than
20% of node hours used between 0.3 and 0.7 GB per MPI
task; about 12% used between 0.7-1.0 GB per MPI task; and
about 7% used between 1.0-1.3 GB per MPI task. Altogether,
about 87% of user node hours went to jobs using 1.3 GB per
MPI task or less, which indicates that these applications could
run utilizing all 24 cores per node. The 13% of node hours
with jobs using over 1.3GB of memory per MPI task would

either have to run ‘un-packed’, with fewer than 24 cores per
node ,or use the small number of large memory nodes.

Fig. 6. Per-task memory high watermark in GB

G. Thread Usage
Another interesting statistic that can provide insights about

the workload is the number of threads that applications are
using per MPI task. Figure 7 and Figure 8 show the
breakdown of Hopper node hours by threads per MPI task.

The figures indicate that almost 80% of node hours are used
by jobs using only a single thread per task. From
requirements workshops [7][8] with NERSC users, it is known
that MPI and OpenMP are the dominant programming models,
making it likely that the 80% of node hours using a single
thread are MPI-only jobs, though, SHMEM applications, Co-
array Fortran applications or UPC applications could also fall
into this category. A smaller but distinct peak is found for six
threads per MPI task, which is the number of cores per
NUMA node on Hopper, and the one that is found to give
most efficient use of computational performance since six
threads would be mapped to the nearest memory region [9].
Almost all the user applications (98%) used six or fewer
threads per MPI task. There are very few jobs with 12, 16 and
24 threads per MPI task.

Fig. 7. Histogram of Hopper node hours by threads used per MPI task

Fig. 8. Breakdown of Hopper CPU hours by number of threads used per MPI
task

H. Library Usage
Figure 9 shows the top libraries used on Hopper by

number of unique users collected using the ALTD tool. The
five most popular libraries are: mpich, the library
implementing the MPI standard on Hopper, zlib, a
compression library used within many other libraries, libsci
the highly optimized package of math libraries provided by
Cray, followed by hdf5 and netcdf, both self-describing,
portable, I/O libraries. Information on library usage provides
information to NERSC on the value of each library and how

many resources and staff to devote to supporting each one.
Understanding user library preference also provides guidance
to vendors about which libraries to spend the most time
optimizing and supporting.

Fig. 9. Top 25 libraries used on the Hopper system by number of unique
users

IV. ANALYSIS AND CONCLUSIONS
The NERSC workload analysis shows the breadth and the

diversity of science areas, applications, algorithms and jobs
sizes. By some metrics however, the NERSC workload is
more homogeneous. Regardless of application or science area,
the workload analysis shows the majority of hours on Hopper,
almost 80%, are from applications using a single thread per
MPI task. Furthermore, close to 90% of applications, use
fewer than 1.3GB of memory per MPI task.

NERSC regularly conducts workload analyses and in the
future will look more closely at memory and threading
requirements. With computing architectures moving towards
more cores per node with less memory per core, applications
may need to add threading, such as with OpenMP, and reduce
memory usage. The positive news for the NERSC workload is
that many applications use less than 1GB of memory per task
alread. More worrying is that only 20% of applications are
running with multiple threads per MPI task. One possibility is
that applications running on Hopper have OpenMP threading
implementations, however the OpenMP threading isn’t being
executed because of the large memory per core available on
Hopper allowing users to run with MPI-only.

It is critically important that NERSC continually study its
workload in order to adapt to user needs and to provide the
systems, services and software to support the broad workload.

ACKNOWLEDGMENT
This work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

DISCLAIMERS
This document was prepared as an account of work sponsored
by the United States Government. While this document is
believed to contain correct information, neither the United
States Government nor any agency thereof, nor the Regents of
the University of California, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or the Regents of
the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof
or the Regents of the University of California.

COPYWRIGHT NOTICE
This manuscript has been authored by an author at Lawrence
Berkeley National Laboratory under Contract No. DE-AC02-
05CH11231 with the U.S. Department of Energy. The U.S.
Government retains, and the publisher, by accepting the article
for publication, acknowledges, that the U.S. Government
retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this
manuscript, or allow others to do so, for U.S. Government
purposes.

REFERENCES

[1] S. Dosanjh, S. Canon, J. Deslippe, K. Fagnan, R. Gerber, L. Gerhardt, J.
Hick, D. Jacobsen, D. Skinner, N.J. Wright, "Extreme Data Science at
the National Energy Research Scientific Computing (NERSC)
Center", Proceedings of International Conference on Parallel
Programming – ParCo 2013, (March 26, 2014)

[2] K. Antypas, J. Shalf, H.J. Wasserman, "NERSC-­‐‑6 Workload Analysis
and Benchmark Selection Process", LBNL Technical Report, August 13,
2008, LBNL 1014E

[3] K. Antypas, T. Butler, J. Carter, “The Hopper System: How the Largest
XE6 in the World went from Requirements to Reality,” Cray User
Group 2011 Proceedings, May 2011.

[4] T. Butler, “DVS, GPFS and External Lustre at NERSC - How It's
Working on Hopper”, Cray User Group Meeting, Fairbanks, AK, May
2011.

[5] M. Fahey, N. Jones, B. Hadri, The Automatic Library Tracking
Database, Conference: Cray User Group 2010, Edinburgh, United
Kingdom

[6] P. Colella, Defining software requirements for scientific computing.
Slide of the 2004 presentation included in David Patterson’s 2005 talk,
(2004);
http://www.lanl.gov/orgs/hpc/salishan/salishan2005/davidpatterson.pdf

[7] R. Gerber and H.J. Wasserman, eds., "Large Scale Computing and
Storage Requirements for High Energy Physics - Target
2017", November 8, 2013

[8] R. Gerber, H.J. Wasserman, "High Performance Computing and Storage
Requirements for Biological and Environmental Research Target
2017", June 6, 2013, LBNL LBNL-6256E

[9] N. Wright, H. Shan, A. Canning, L.A. Drummond, F. Blagojevic, J.
Shalf, K. Yelick, S. Ethier, K. Fuerlinger, M. Wagner, N. Wichmann, S.
Anderson, and M. Aamodt, “The NERSC-Cray Center of Excellence:
Performance Optimization for the Multicore Era”, Cray User Group
Meeting, Fairbanks, AK, May 2011.

